Kiss your heatsink goodbye: A kilowatt motor inverter based on GaN Stanislav Divin, Application engineer, STMicroelectronics

Gan

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

0,2 W/cm³

<30 V/ns

What about Motor Control?

Size of the motor is defining power => we cannot make it smaller

Higher dV/dt is causing voltage overshoots!

This might lead to a partial discharge inside the motor winding

High dV/dt

Smaller motor

Slightly higher dV/dt

Slightly higher dV/dt

No reverse recovery of body diode

Slightly higher dV/dt

No reverse recovery of body diode

Smaller die area with comparable RDSON

Slightly higher dV/dt

No reverse recovery of body diode

Smaller die area with comparable RDSON

Higher price

Where to focus?

Is it possible?

GaN in Motor Control 650V PowerGaN with STDRIVEG611 GaN Driver

Activity details

GaN Transistors under test:

120mΩ_(MAX) GaN in PowerFLAT 5x6

≣,

- 65mΩ_(MAX) GaN in PowerFLAT 5x6
- Validation target: 500W, 800W

Positioning GaN in Motor Control

GaN in Motor Control 650V, 120m $\Omega_{(MAX)}$ GaN thermal results

SGT120R65AL, thermal performance considerations

- Max input power ~630 W (300 V_{DC}, 2 A_{RMS})
- Turn-on speed set on 10 V/ns
- Switching frequency 16 kHz
- Passive cooling through PCB
- Max case temperature on GaN 92°C
- Lower power translates into significantly lower temperature

 $120m\Omega$ GaN seems a good fit for applications around **500W**

SGT120R65AL 75m Ω typ. (120m Ω max), absolute T_{Jmax} 150°C Typical application starts at T_{amb} 60°C

GaN in Motor Control 650V, $65m\Omega_{(MAX)}$ GaN thermal results

SGT65R65AL, thermal performance considerations

- Max input power ~1000 W (300 V_{DC}, 3.2 A_{RMS})
- Turn-on speed set on 10 V/ns
- Switching frequency 16 kHz
- Passive cooling through PCB
- Max case temperature on GaN 91°C

 $65m\Omega$ GaN seems a good fit for applications around **800W**

SGT65R65AL 49m Ω typ. (65m Ω max), absolute T_{Jmax} 150°C Typical application starts at T_{amb} 60°C

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

