Maximizing application benefits with GaN: a comparison of commercial technologies

Dario Pagnano, Senior GaN Device Manager, Nexperia Marco Scilio, EMEA FAE Team Leader – Analog & Power, Nexperia

GON

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

Our portfolio of essential semiconductors

Co-existence of power technologies addressing different applications

Co-existence of power technologies addressing different applications

650 V applications

- Datacom and Telecom (AC/DC and DC/DC)
- Photovoltaic (PV) micro inverter (DC/AC)
- Industrial (DC/AC)
- BLDC / micro servo motor drives
- TV power supply unit (PSU)

Nexperia • Bodo's WBG Event 2024

GaN technologies compared

GaN cascode (d-mode)

- Two die solution
- Uncompromised 2DEG

 → highest electron mobility
 → best channel conductivity full temperature range
- Robust gate (V_{th} =4 V, V_{GS} =±20 V) → high margin against noise
- Easy to drive (no negative drive)

GaN E-mode

- Single die: HEMT
 → easier package, manufacturing, SCM
- Gate voltage (V_th ~1.5-2V), devices fully turned-on at 5-6V
- Pure GaN die, able to work at very high frequency
- Excellent FOM vs others compounds (5x better than LV 100V Si MOSFET)

Complementing products to maximize system benefit

CCPAK1212(i)

Copper clip package with flexible leads for best board level reliability and possibility of automatic optical inspection. In top-side and bottom-side cooled designs.

DFN5060

Dual Flat No Leads package with 5mm x 6mm form factor for compact and high-performance designs

WLCSP8

Wafer-Level Chip Scale Package to minimize device size and RLC parasitics while offering excellent thermal dissipation

650V E-mode vs. Cascode Datasheet Comparison

	Cascode Nexperia	E-mode Competitor	
V _{DS} max.	650V	650V	
R _{DS(on)} typ. @ 25°C	50mΩ	50mΩ	
R _{DS(on)} typ. @ 150°C	103mΩ	129mΩ	
I _{DS} Pulse	150A	60A	ľ
V _{SD} @ 150°C	2.6V	6V	J
V _{GS(th)} min.	3.4V	1.1V	
V _{GS} on	10V	6V	
V _{GS} max.	20V	7V	
Q_{GD}/Q_{GS1}	0.9	2.3	J
Q _{oss}	125nC	64nC	
Q _G	15nC	6.1nC	

For low power applications with higher $R_{DS(on)}$ parts, the benefits of the Cascode become less decisive.

Cascode Benefits

- Cascode for high-power applications
 - R_{DS(on)} more stable over temperature
 - Higher saturation current
 - Lower reverse conduction losses
- Robust gate drive
 - High V_{GS(th)} (inherently safe against parasitic turn-on)
 - High dv/dt immunity (low Miller ratio)

E-mode Benefits

- E-Mode for higher switching frequencies
 - Lower switching losses
 - Lower gate drive losses

R_{DS(on)} and Saturation Current

Cascode better for high power applications

• Cascode R_{DS(on)} compared to E-mode is more stable over temperature:

• 2.0 vs. 2.6 (@ 150°C)

• 2.4 vs. 3.3 (@ 175°C)

- Cascode high temperature saturation is well beyond rated I_{D} and I_{D} is not limited by saturation
- E-mode shows drop in I_{Sat} with temperature

D

0.9 x R_{DS(on)}

S

V_{SD} in Reverse Conduction

Very low V_f voltage drop of SI MOSFET body diode

 Body diode with **low V_f** enables Si-like freewheeling current capability with **low V_{sD}**

Technology	V _{sD} @ 25°C	V _{sD} @ 150°C
Cascode GaN (V _{GS} = 0V)	1.9V	2.6V
E-mode GaN ($V_{GS} = 0V$)	3.7V	6V
E-mode GaN ($V_{GS} = 0V$)	3.7V	6V

 I_{D} = 25A, recommended V_{GS} as per datasheet

- Negative V_{GS} ensures safe operation for E-mode or SiC but increases reverse conduction loss

The Si MOSFET body diode allows the HEMT to completely turn on with a small positive V_{GS}

Cascode GaN in CCPAK1212

Leveraging 20 years of LFPAK experience to maximize the potential of the GaN technology

Stacked die and copper clip minimize parasitics – Very low R_{th}

Cascode and e-mode qualified to JEDEC standards

GAN039-650NTB

GAN3R2-100CBE

Tests	Sample size	Results	Status	Tests	Sample size	Results	Status
High Temperature Negative Gate Bias (HTNGB) $T_j = 175 \text{ °C}, V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}, 1000 \text{ hours}$	240	PASS	Completed	High Temperature Gate Bias (HTGB) $T_j = 150 \text{ °C}, \text{ VGS} = 5.5\text{ V}, 1000 \text{ hours}$	231	PASS	Completed
High Temperature Positive Gate Bias (HTPGB) $T_j = 175 \text{ °C}, V_{GS} = +20 \text{ V}, V_{DS} = 0 \text{ V}, 1000 \text{ hours}$	240	PASS	Completed	High Humidity High Temperature and Reverse Bias (H3TRB) T = 85% RH = 85% V = 80 V 1000 bours	231	PASS	Completed
High Humidity High Temperature and Reverse Bias (H3TRB) TA = 85 °C / 85 %RH, V _{DS} = 100 V, V _{GS} = 0 V	240	PASS	Completed	Highly Accelerated Stress Test (HAST) T = 130 °C, RH = 85%, V_{DS} = 42 V, 96 hours	231	PASS	Completed
Unbiased Highly Accelerated Stress Test (UHAST) TA = 130 °C / 85 %RH	240	PASS	Completed	High Accelerated Stress Test (HTOL) LLC, $V_{in} = 60 V$, FFSW = 1 MHz, $T_j > 125 °C$, 1000 hours	231	PASS	Completed
Intermittent Operating Life (TFAT) $dT_j = 80 \text{ °C}, 10 \text{ k cycles}$	240	PASS	Completed	Thermal cycling -40 °C to 125 °C @ rate of 15 °C / min, 1000 cycles	231	PASS	Completed
Thermal cycling TA = -55 °C to 150 °C, 1000 cycles	240	PASS	Completed	High Temperature Reverse Bias (HTRB) T = 150 °C, V_{DS} = 80 V, 1000 hours	231	PASS	Completed
High Temperature Reverse Bias (HTRB) Tj = 150 °C, V_{DS} = 520 V, V_{GS} =0 V, 1000 Hrs	240	PASS	Completed				

GAN041-650WSB - Qualification beyond standard

	Tests	Sample size	Results	ts Nexperia Extended Results		Current Status
	High Temperature Negative Gate Bias (HTNGB) $T_j = 175 \text{ °C}, V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}, 1000 \text{ hours}$	240	PASS	2000 hrs	2 x	Completed
	High Temperature Positive Gate Bias (HTPGB) $T_j = 175 \text{ °C}, V_{GS} = +20 \text{ V}, V_{DS} = 0 \text{ V}, 1000 \text{ hours}$	240	PASS	2000 hrs	2 x	Completed
I	High Humidity High Temperature and Reverse Bias (H3TRB) TA = 85 °C / 85 %RH, V_{DS} = 100 V, V_{GS} = 0 V	240	PASS	2000 hrs	2 x	Completed
	Unbiased Highly Accelerated Stress Test (UHAST) TA = 130 °C / 85%RH	240	PASS	198 hrs	2 x	Completed
	Intermittent Operating Life (TFAT) $dT_j = 80 \text{ °C}, 10 \text{ k cycles}$	240	PASS	20,000 cyc	2 x	Completed
	Thermal cycling TA = -55 °C to 150 °C, 1000 cycles	240	PASS	2000 сус	2 x	Completed
	High Temperature Reverse Bias (HTRB) $T_j = 175 \text{ °C}, V_{DS} = 520 \text{ V}, V_{GS} = 0 \text{ V}, 1000 \text{ Hrs}$	240	PASS	2000 hrs	2 x	Completed

K. TO-24T

GAN041-650WSB - Qualification beyond standard

→ 168 HRS → 1008 HRS -2016 HRS Initial Measurement 5.0E+0 Upper limit >4.5E+0 V_{th} plot: HTRB at 520 V, 175 °C values 4.0E+0 3.5E+0 3.0E+0 <u>ower limit</u> Measured 2.5E+0 2.0E+0 1.5E+0 1.0E+0 500.0E-3 0 25 27 \$29 335 337 339 66 303 305 <u></u> 09 13 15 319 341 23 В 6 5 õ Ξ H 2 Ξ. 57 Controls Parts on test ----- Initial Measurement → 1008 HRS 45.0E-3 40.0E-3 C Upper limi 35.0E-3 values / R_{DS(on)} plot: HTRB at 520 V, 175 °C 30.0E-3 Less than 5% delta shift after 2000 25.0E-3 Measured 20.0E-3 hours 15.0E-3 10.0E-3 5.0E-3 0 575 577 579 271 87 349 571 275 279 281 283 85 89 97 66 01 80 5 23 25 29 31 39 41 343 345 277 5 2 σ. õ 0 õ 2 4 Controls Parts on test

Complemeting technologies delivering highest efficiencies

GAN039-650NTB

GAN3R2-100CBE

Efficiency for a buck converter 48V to 12V (fSW = 250kHz, 500kHz, 750kHz)

Output Power (W)

For more information visit: nexperia.com/gan-fets

E-mode and D-mode GaN technologies have complementing strengths

Both technologies have specific application areas where they fit best

The right package and product concept maximizes the benefit coming from the technological strengths

Both technologies have proven reliability and deliver high efficiencies

Nexperia provides the solution that fits best to the customer!