Accurate SiC simulation in SPICE and

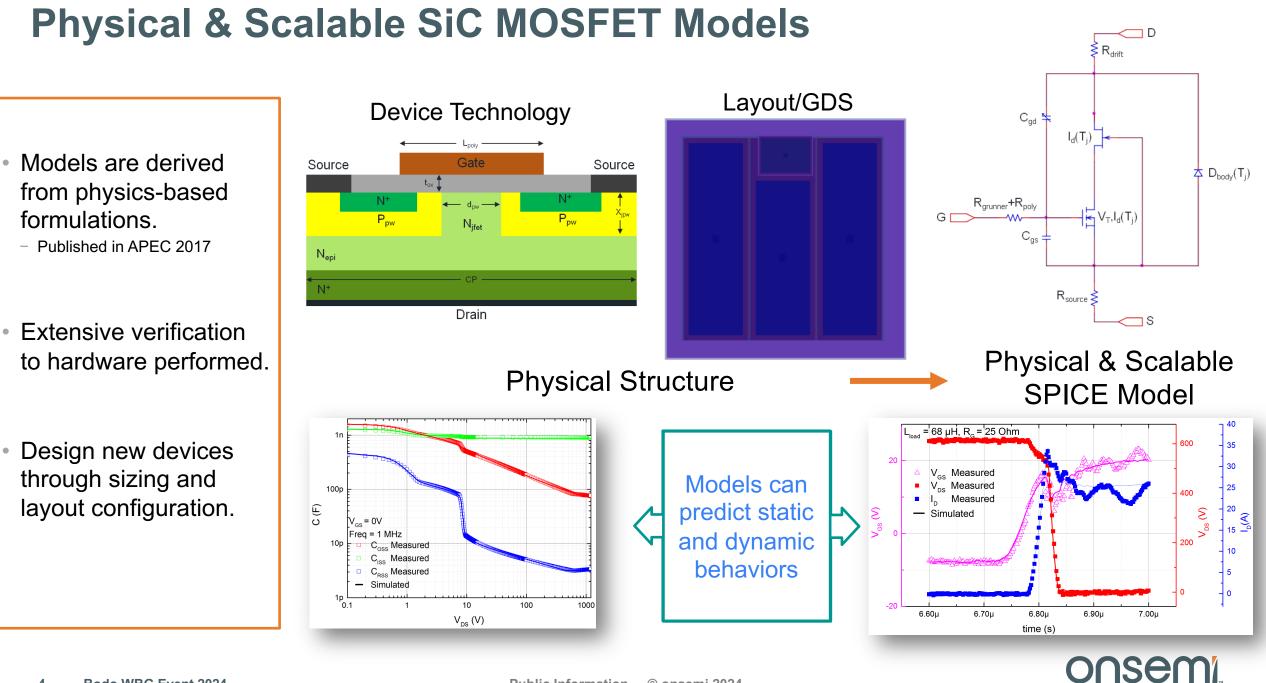
Didier Balocco : EMEA Technical Marketing James Victory : Modeling and Simulation Fellow

Onsemi

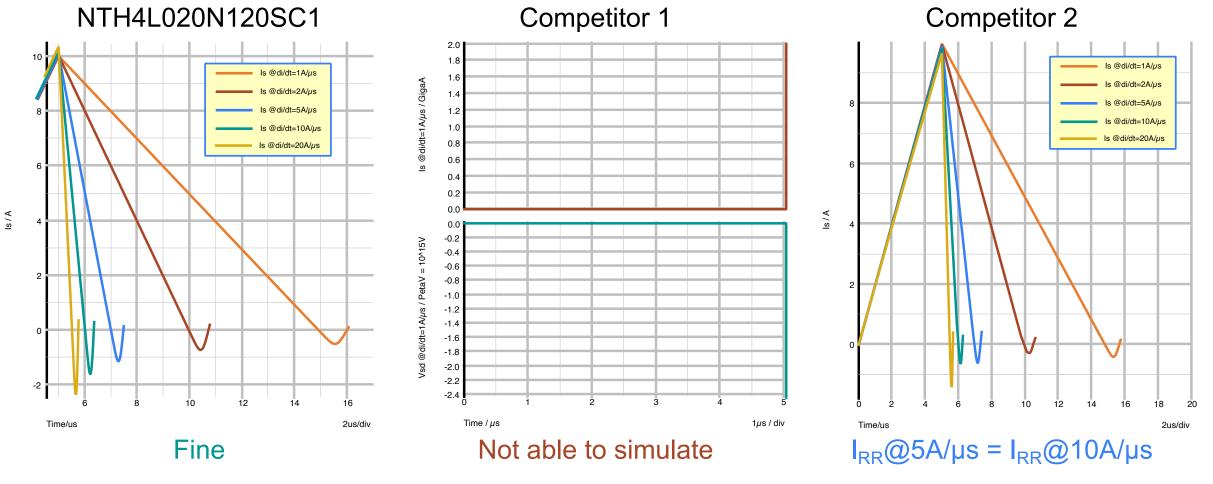
Sic

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

Content

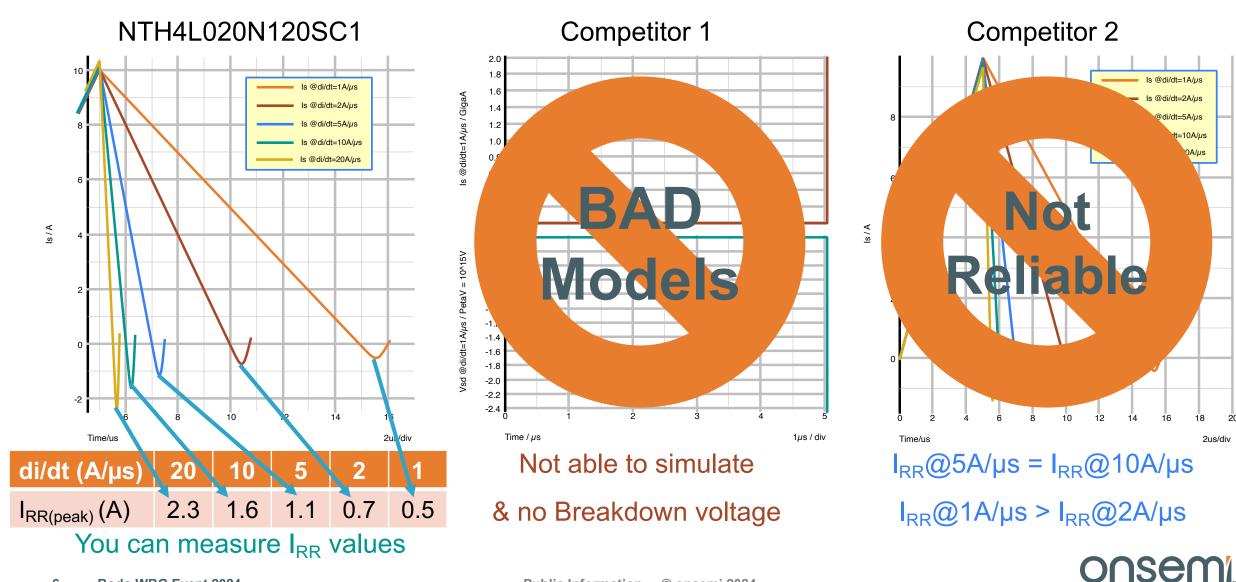

- onsemi Unique Physical & Scalable Simulation Modeling
- Are passives really passive ?
- SPICE simulations : Boost example
- onsemi online tool structure : 2 in 1
- Why a pless Model Generator ?
- Data set density
- pless model results
- Elite Power Simulator
- Comparing Boost results SPICE vs Custom pleces models
- Conclusions

onsemi Unique Physical & Scalable Simulation Modeling


For accurate results in all conditions

Comparison of various SiC MOSFET SPICE models

• Reverse Recovery vs di/dt :


& no Breakdown voltage

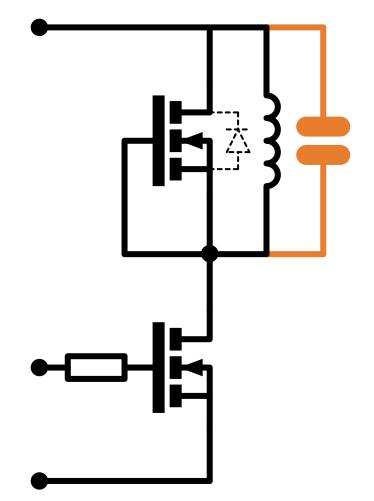
Onsemi

 $I_{RR}@1A/\mu s > I_{RR}@2A/\mu s$

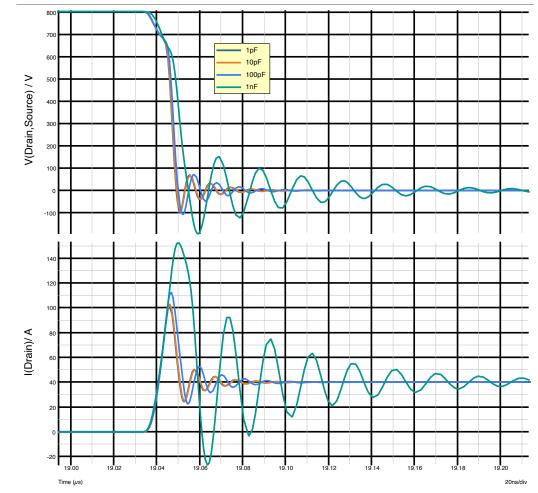
Comparison of various SiC MOSFET SPICE models

• Reverse Recovery vs di/dt :

6 Bodo WBG Event 2024

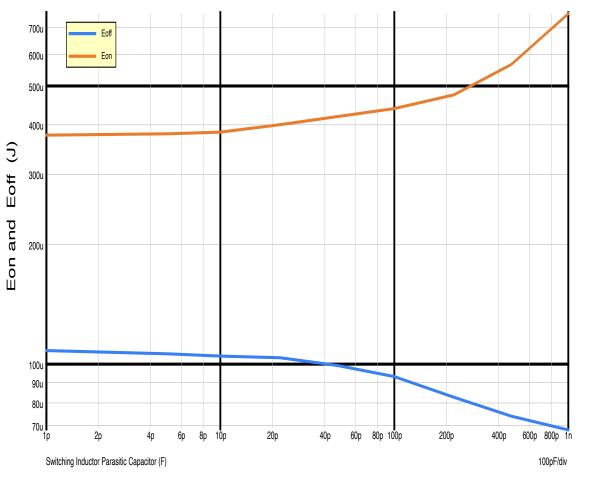

Are passives really passive?

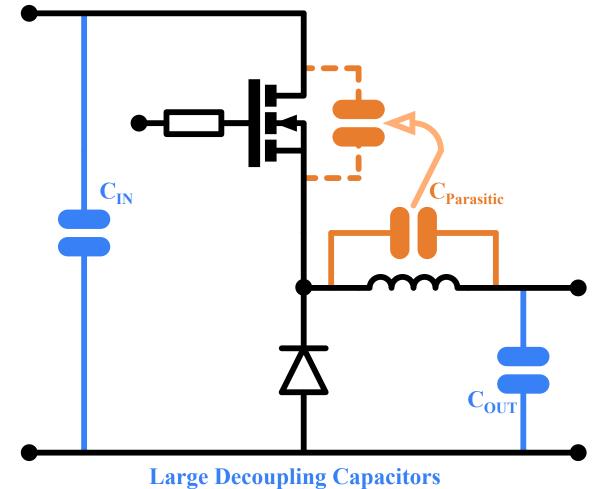
How passive devices affect active device losses ?



Inductor Parasitic Capacitor

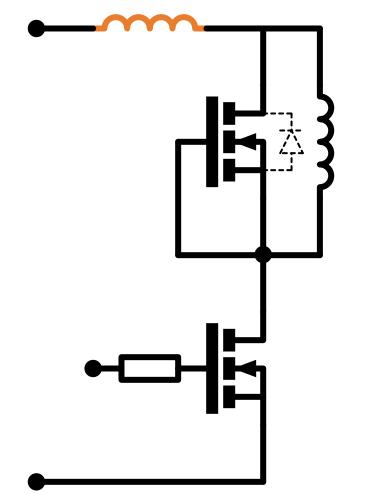
Schematic

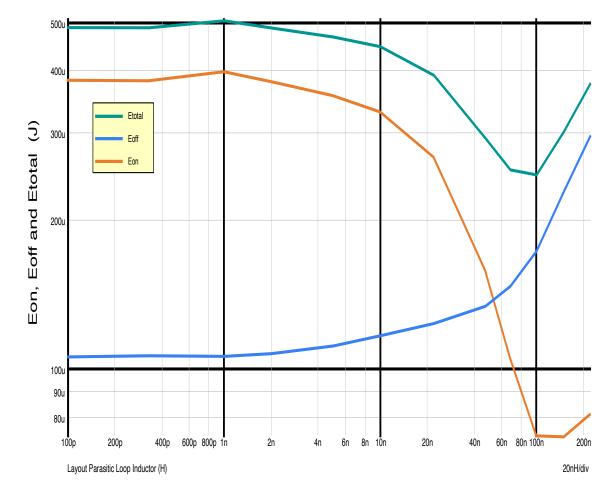

Turn-On Waveforms



Inductor Parasitic Capacitor

Eon & Eoff

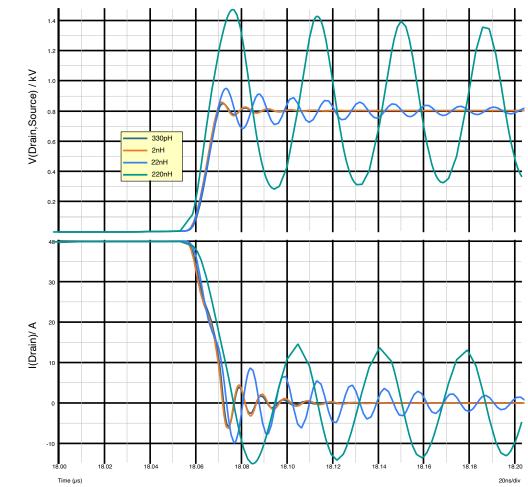

Equivalent Schematic



Layout Parasitic Inductor

• Schematic

• Eon, Eoff & Etotal


onsemi

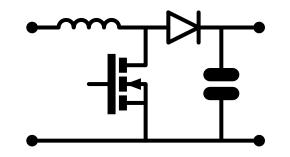
Layout Parasitic Inductor - Waveforms

Turn ON

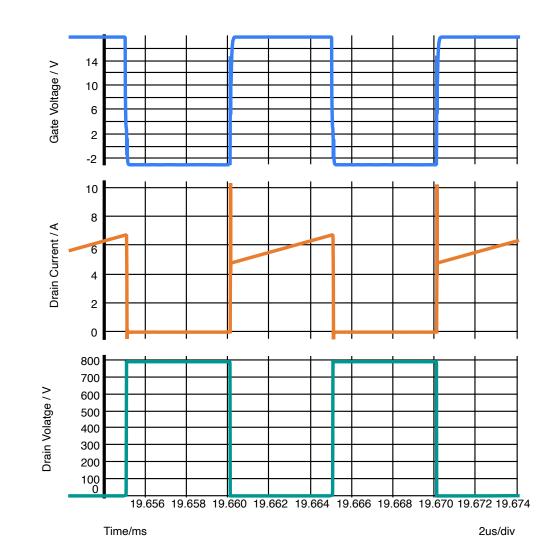
Turn Off

Too much EMI with 22nH and 22nH

Onsem


SPICE simulations

Boost Example



Boost example

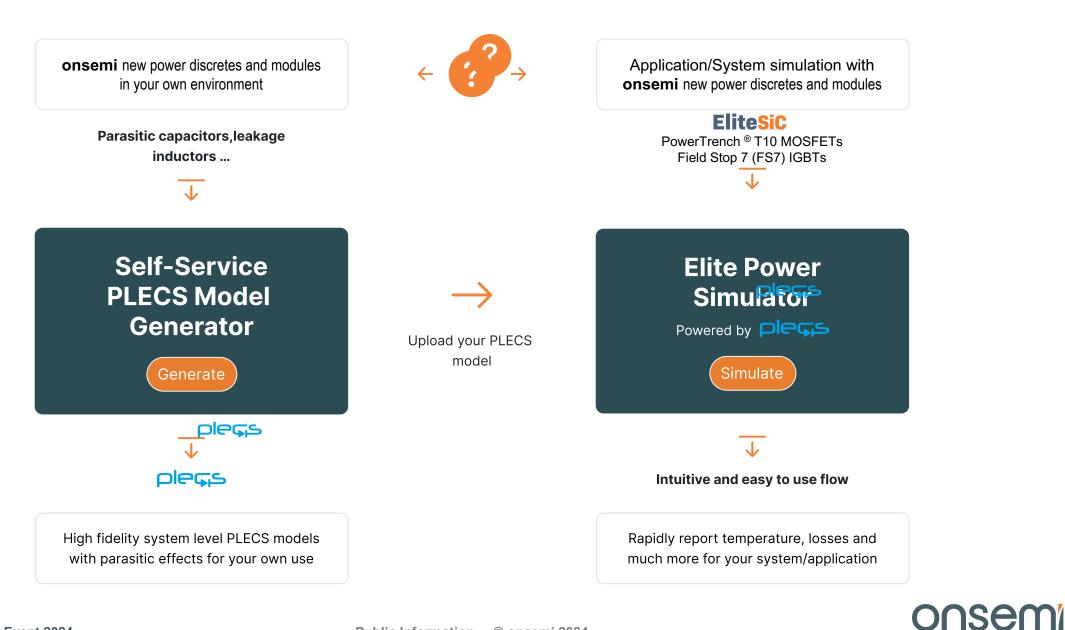
• Boost stage :

- Parameters :
 - Input : 400V
 - Output : 800V
 - Power : 2kW
 - Switching Frequency : 100kHz

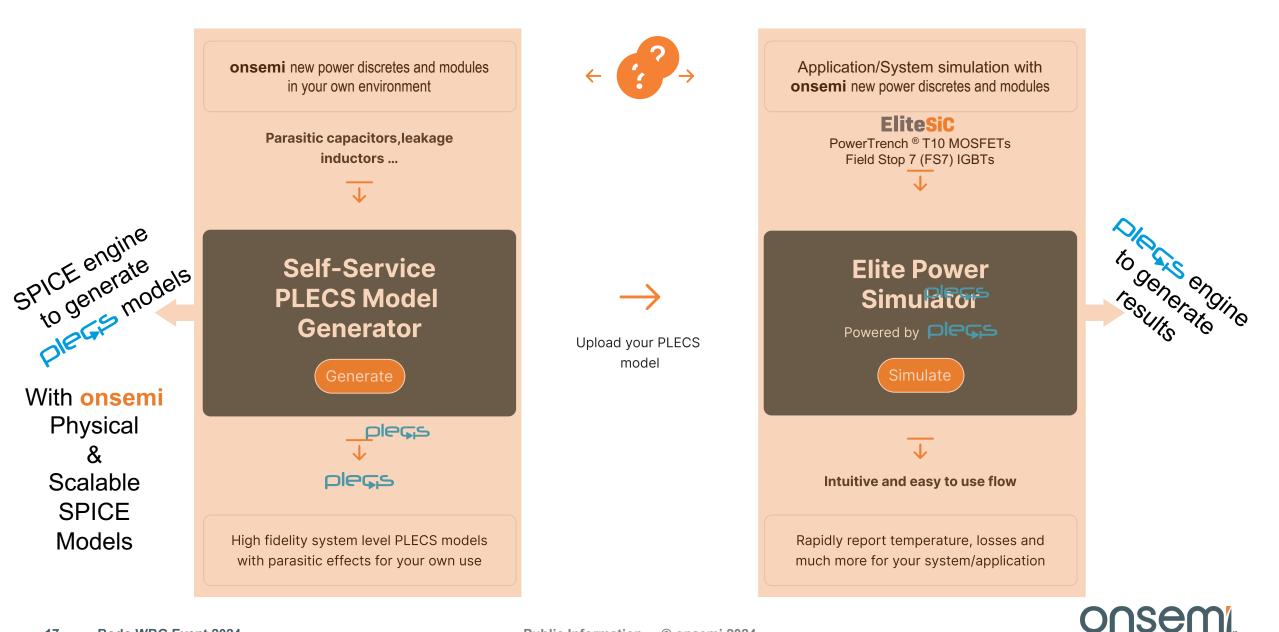
Results with various inductor parasitics

The parasitic inductor capacitor values are : 10pF, 100pF and 1nF.

The resonant frequencies associated are : 1.6MHz, 500kHz and 160kHz. The SiC Boost operates at 100kHz



onsemi online tool structure


2 in 1 !

New tool flow and interaction

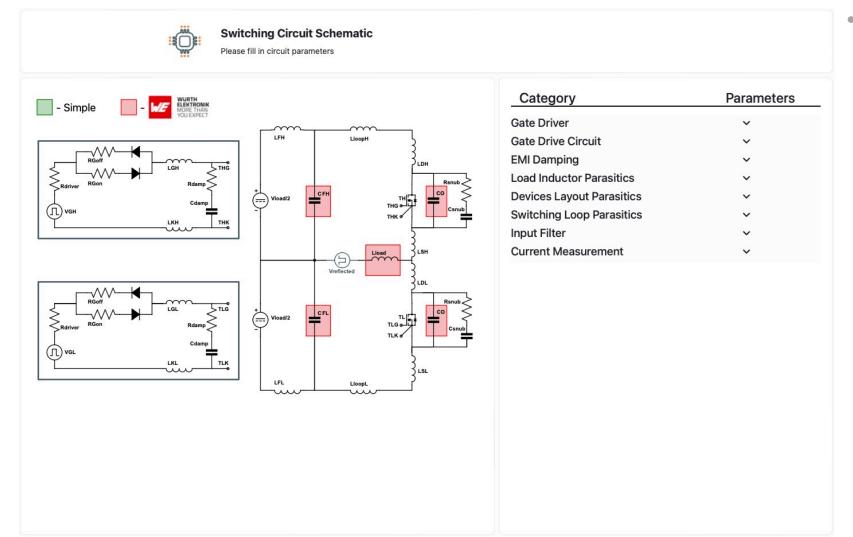
Mixing onsemi SPICE expertise and pless power

Why a pless Model Generator ?

Self Service PLECS Model Generation (SSPMG)

Problem Statement:

- System level simulators like the industry standard tool PLECS require specific models for the power discretes or modules that are implemented in the simulation of various power converter topologies.
- The models consist of 3 major characteristics:
 - conduction losses,
 - switching energy losses,
 - and thermal impedance data.
- The loss data over bias and temperature is in a table which the system simulator interpolates based on the operation condition of the power device in the application.


Self Service PLECS Model Generation (SSPMG) Problem Statement:

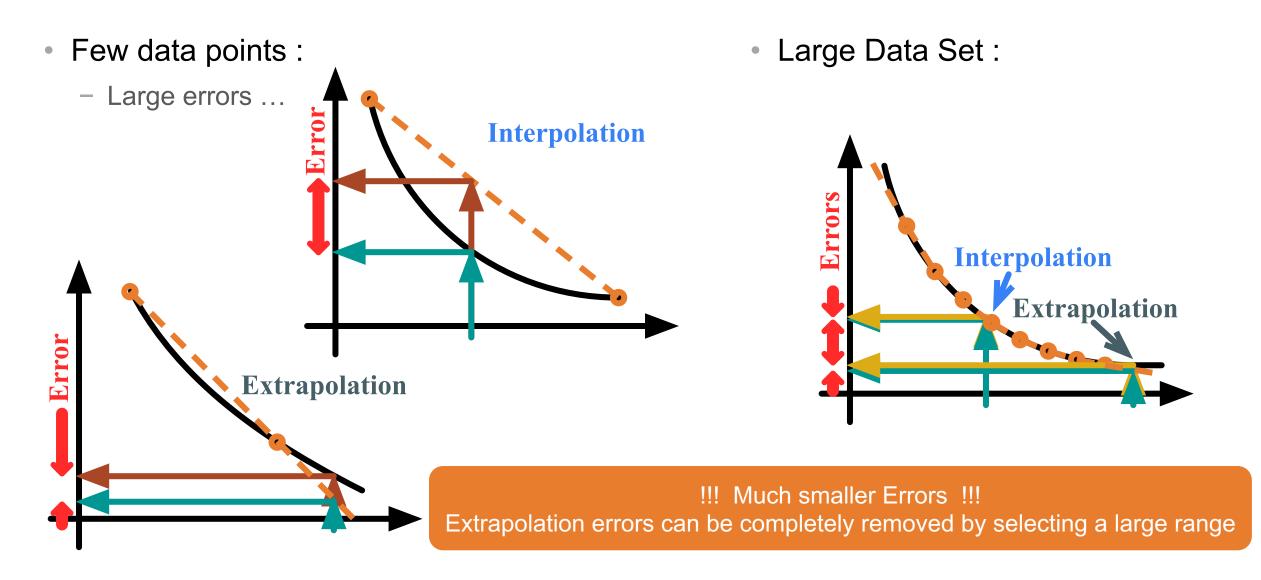
- The models generally come from datasheets which presents 2 major problems:
 - The switching loss data are dependent on all measurement setup parasitics ...
 - The datasheet data is limited and thus is often not dense enough to ensure accurate interpolation or extrapolation by the system level simulator.

- Models can also be obtained by measurement BUT, it is a time-consuming process
 - The switching loss data are dependent on all measurement setup parasitics ...

Model Generator Schematic with Parasitics

• The schematic includes :

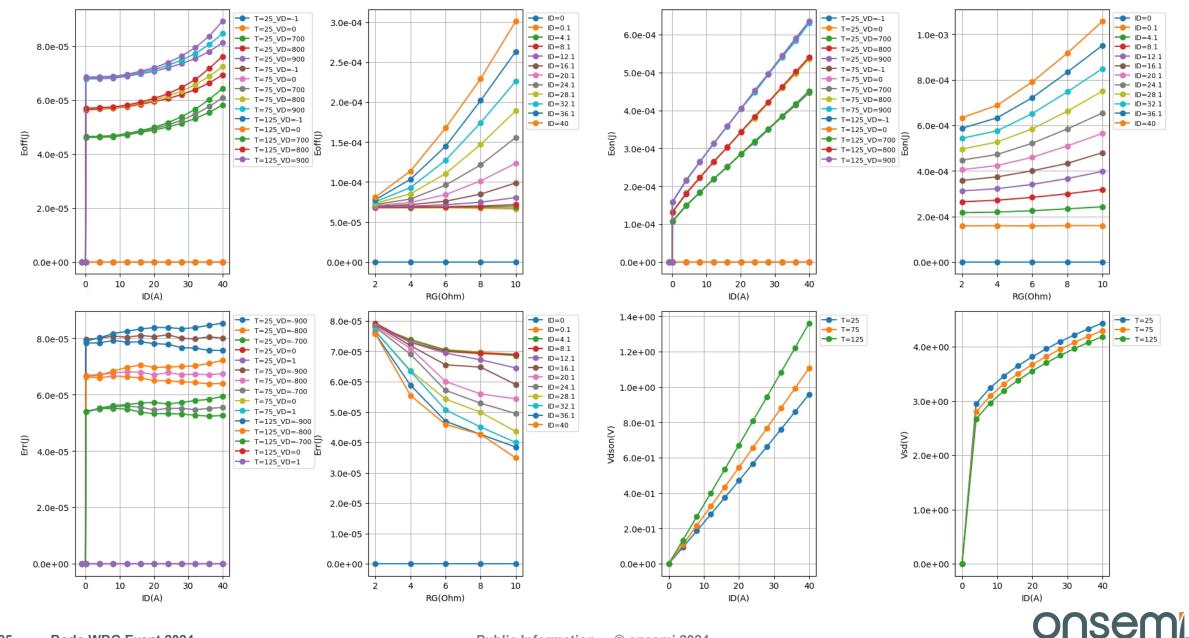
- Input decoupling with Capacitor ESR and ESL,
- Loop PCB leakage inductors in the switching cell,
- Drain and Source PCB leakage inductors and resistors,
- Serie Resistor and Parallel Capacitor for the switching inductance,
- Damping networks between Gate-Source and Drain-Source,
- Gate drive network with split turn-on and turn-off resistors.


onsemi

Data set density

How it impacts results ?

Large Data Set for Interpolation and Extrapolation



Onsemi

pless modeling results

Self-Service PLECS Model : Double Pulse Tester Results

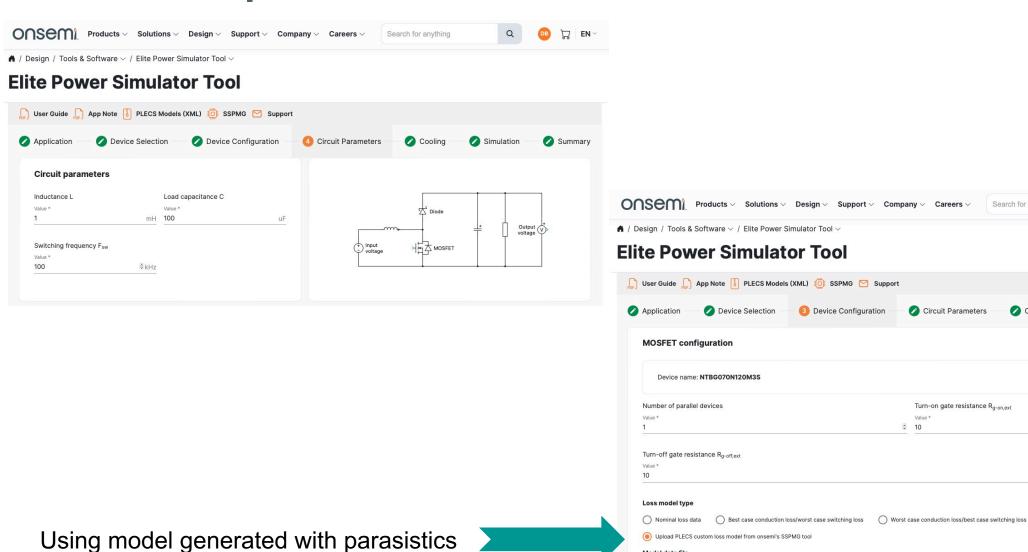
25 Bodo WBG Event 2024

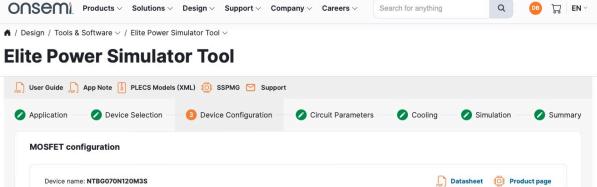
Public Information © onsemi 2024

Elite Power Simulator

Topologies simulations

Online Simulator Topologies & Applications


		Automotive converter topologies	Industrial converter topologies	
All major topologies	s are available :	AC/DC ~	AC/DC ~	Industrial converter topologies
		DC/DC ~	DC/DC	AC/DC ~
	Automotive converter topologies	DC/AC	Boost Converter Boost Converter Boost Converter (3 level, symmetric)	DC/DC v
Automotive converter topologies	AC/DC ~	Traction inverter (3 phase)	Buck-Boast Converter (Inverting, 2 switch) Synchronous Boost Converter	DC/AC ^
AC/DC	DC/DC ^		Synchronous Buck Converter Synchronous Boost Converter (3 level) Synchronous Buck Converter (3 level) Synchronous Buck Converter (3 level)	Full Bridge Inverter (1 phase, 2 level) Haff Bridge Inverter (1 phase, 2 level) Haff Comparison (1 phase, 2 level)
Active Front End (1 phase, 2 level) Active Front End (3 phase, 2 level) Active Front End (3 phase, 2 level) (Traction) Asymmetrical Bridgeless PFC Converter	Synchronous Boost Converter Synchronous Boost Converter Synchronous Boost Converter (3 level) Synchronous Boost Converter (3 level) Flyback Converter (1 sivich)	Industrial converter topologies	Synchronous Buck-Boost Converter (inverting, 2 switch) Flying Capacitor Boost Converter (3 level) Hybrid Switched Capacitor Converter Resonant Switched Capacitor 4 to 1 Converter	H5 Inverter H0.5 Inverter Inverter (3 phase, 2 level, grid load)
Boost PFC Converter (diode bridge) (1/2 phases) Classic Bridgeless PFC Converter Totempole Bridgeless PFC Converter (1/2/3 phases)	Flyback Converter (1 switch) Flyback Converter (2 switch) Half-bridge LLC Resonant Converter Flub-bridge LLC Resonant Converter	AC/DC ^	Resonant Switched Capacitor 8 to 1 Converter Flyback Converter (1 switch) Flyback Converter (2 switch)	Inverter (3 phase, 2 level, motor load) NPC Inverter (1 phase, 3 level) NPC Inverter (3 phase, 3 level) T-Type Inverter (1 phase, 3 level)
Vienna Rectifier (3 phase, 1 switch per leg) Vienna Rectifier (3 phase, 2 switches per leg)	Dual Active Bridge Converter CLLC Resonant Converter (charging mode) CLLC Resonant Converter (discharging mode)	Active Front End (3 phase, 2 level) Asymmetrical Bridgeless PFC Converter Boost PFC Converter (diode bridge) (1/2 phases)	Forward Converter (2 switch) Active Clamp Forward Converter Half-bridge Converter (hard-switched)	T-Type Inverter (3 phase, 3 level) ANPC Inverter (1 phase, 3 level) ANPC Inverter (1 phase, 3 level) ANPC Inverter (3 phase, 3 level)
DC/DC ~	Phase Shift Full Bridge Converter	Classic Bridgeless PFC Converter Totempole Bridgeless PFC Converter (1/2/3 phases) Vienna Rectifier (3 phase, 1 switch per leg)	Full-bridge Converter (hard-switched) Half-bridge LLC Resonant Converter Full-bridge LLC Resonant Converter	Inverter (3 phase, 2 level, BLDC load)
DC/AC v	DC/AC ~	Vienna Rectifier (3 phase, 2 switches per leg)	Dual Active Bridge Converter CLLC Resonant Converter (charging mode) CLLC Resonant Converter (discharging mode)	
		DC/DC v	Phase Shift Full Bridge Converter	New Topologies available with T10
		DC/AC v	DC/AC ~	


onsemi.com products available are :

- All SiC MOSFET Discretes and Modules
- New Field Stop 7 IGBT Discretes and IPMs
- New T10 Low and Medium Voltage Silicon MOSFETs

Boost Example

Value *

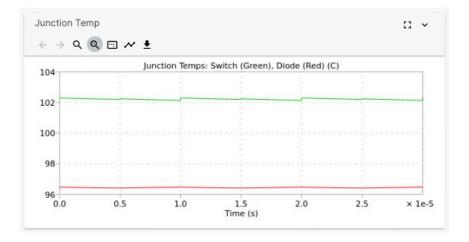
0 10

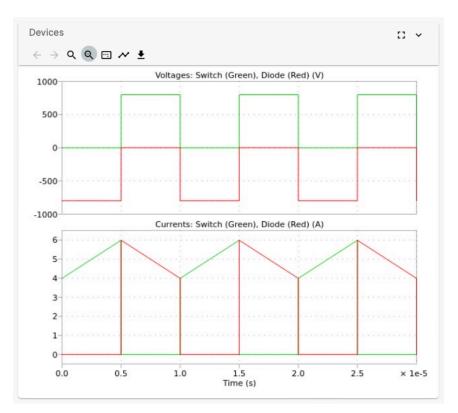
Turn-on gate resistance Rg-on,ext

οΩ

÷Ω

onsemi

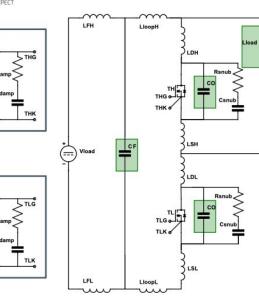

28 Bodo WBG Event 2024 Model data file


Change file

NTBG070N120M3S_nominal_sspmg1816.xml

Results with nominal model

MOSFET	IGBT	Switch Max Tj	Diode		Diode Max Tj	Heatsink M Temp.	lax	Am Ter	nbien mp.	t
NTBG070N120)M3S	102.3 °C	NDSH1012	DC_F155	96.5 °C	90.0 °C	1	90 °C		
Losses Overview								J	Ŧ	~
Switching Losse	s Conduc	tion Losses	Diode Con	duction	Combine	d Losses	Effi	cien	су	
12.93 W	1.09 W		3.07 W		17.08 W		99.	14 5	%	
Switch Losses Bre	akdown							7	Ŧ	~
Turn-on Losses	Turn-off Los	ses Forward	d Conduction	Reverse	Conductior	n (Body) Di	ode (Con	duct	ion
10.33 W	2.60 W	1.09 W	1	0 W		0 W				



Results with various inductor parasitic capacitors

Generating models for 10pF, 100pF, 1nF capacitors

Switching Circuit Schematic
Please fill in circuit parameters

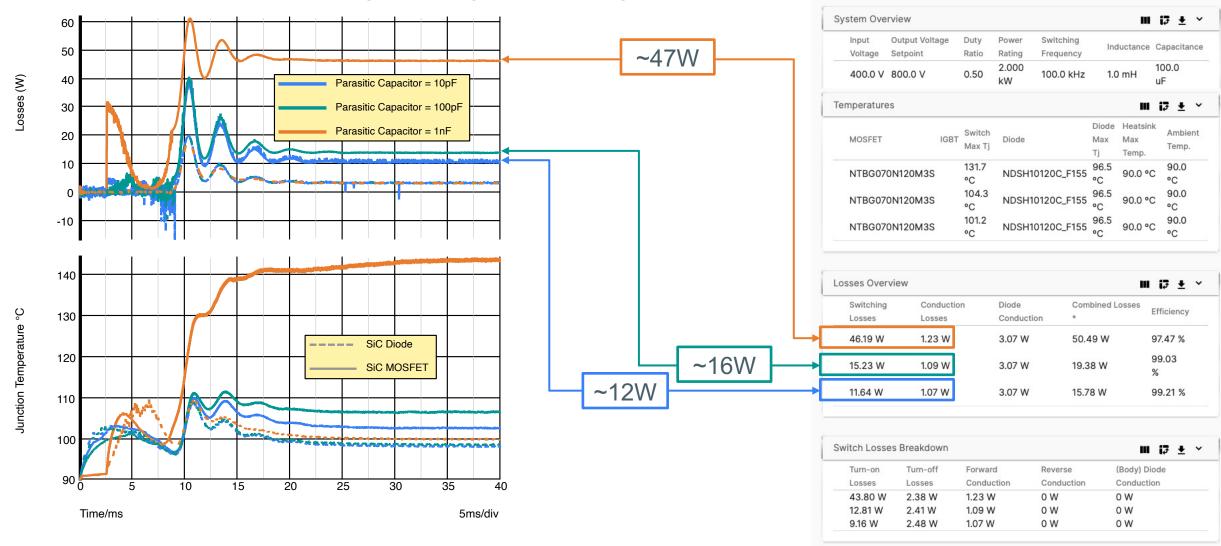
Category	Parameters
Gate Driver	~
Gate Drive Circuit	~
EMI Damping	~
Load Inductor Parasitics	^
Rload (Ω)	0
Cload (F)	100p
Devices Layout Parasitics	~
Switching Loop Parasitics	~
Input Filter	~
Current Measurement	~

Input	Output Voltage		Power	Switching	Ind	luctance	Capacitan	nc
Voltage	Setpoint	Ratio	Rating	Frequency				
400.0 V	800.0 V	0.50	2.000 kW	100.0 kHz	1.0	mH	100.0 uF	
Temperature	es					ш	17 ±	`
		Switch						
MOOFFT			Diada		Diode	Heatsin	k Ambie	nt
MOSFET	10	GBT Switch Max Tj	Diode		Diode Max Tj	Heatsin Max Temp.	k Ambie Temp.	
		GBT		10120C E155	Max	Max Temp.	Ambier Temp.	
	0N120M3S	GBT Max Tj		0120C_F155	Max Tj	Max	Ambier Temp.	
NTBG07	0N120M3S	GBT Max Tj 131.7	NDSH1		Max Tj 96.5	Max Temp. 90.0 °C	Ambier Temp. 90.0 °C	
NTBG07		GBT Max Tj 131.7 °C	NDSH1	10120C_F155	Max Tj 96.5 °C	Max Temp.	Ambier Temp. 90.0 °C	
NTBG07 NTBG07	0N120M3S	GBT Max Tj 131.7 °C 104.3	NDSH1		Max Tj 96.5 °C 96.5	Max Temp. 90.0 °C	Ambiei Temp. 90.0 °C 90.0 °C 90.0	

Switching	Conduction	Diode	Combined Losses	Efficiency
Losses	Losses	Conduction	*	Efficiency
46.19 W	1.23 W	3.07 W	50.49 W	97.47 %
15.23 W	1.09 W	3.07 W	19.38 W	99.03 %
11.64 W	1.07 W	3.07 W	15.78 W	99.21 %

-	- "	-		
Turn-on	Turn-off	Forward	Reverse	(Body) Diode
Losses	Losses	Conduction	Conduction	Conduction
43.80 W	2.38 W	1.23 W	0 W	0 W
12.81 W	2.41 W	1.09 W	0 W	0 W
9.16 W	2.48 W	1.07 W	0 W	0 W

Onsemi


Comparing results

SPICE vs Custom plegs models

Results with various inductor parasitic capacitors

Generated models for 10pF, 100pF, 1nF capacitors

Onsemi

Conclusions

Conclusion

• **onsemi** has developed new SPICE modeling technic to face new SiC material challenges and gave designers a better understanding of dynamic behaviors.

- onsemi brings a new online platform based on plecs with unique feature : Self Service plecs Model Generation (SSPMG)
 companion of the Elite Power Simulator for systems' simulations.
 - Using on onsemi high accuracy Physical & Scalable SPICE models
 - With larger tables for better interpolations and NO extrapolations

 The focus of onsemi SPICE models and online tools are Accuracy and not give unreachable results...and unexpected hope.

Onsemí

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com

Physical & Scalable Modeling IEEE Papers

 [1] A Physically Based Scalable SPICE Model for Silicon Carbide Power MOSFETs

https://ieeexplore.ieee.org/document/7931077/

- [2] SiC MOSFET Corner and Statistical SPICE Model Generation <u>https://ieeexplore.ieee.org/document/9170091/</u>
- [3] A physically based scalable SPICE model for Shielded-Gate Trench Power MOSFETs

https://ieeexplore.ieee.org/document/7520817/

Physical & Scalable Modeling help available at onsemi.com

- [1] An Introduction to Physical Scalable Models for Wide Bandgap Power Semiconductor Part One (Blog article) <u>https://www.onsemi.com/blog/industrial-cloud-power/wide-band-gap-ecosystem-part-i</u>
- [2] Wide Bandgap Power Semiconductor: Silicon Carbide MOSFET Models Part Two (Blog Article) https://www.onsemi.com/blog/industrial-cloud-power/wide-band-gap-ecosystem-switches-disruptive-environments
- [3] Wide Bandgap Semiconductor Simulation Model Verification Part Three (Blog Article) https://www.onsemi.com/blog/industrial-cloud-power/wide-bandgap-semiconductor-simulation-model-verification
- [4] Physically Based, Scalable SPICE Modeling Methodologies for Modern Power Electronic Devices (White paper) https://www.onsemi.com/pub/Collateral/TND6260-D.PDF
- [5] SPICE Modeling Tutorial (Tutorial) <u>https://www.onsemi.com/pub/collateral/tnd6248-d.pptx</u>
- [6] Physically Based, Scalable SPICE Modeling Methodologies for Modern Power Electronic Devices (Video) <u>https://www.onsemi.com/video/physically-based-scalable-spice-modeling-methodologies-for-modern-power-electronic-devices</u>
- [7] How to use Physical and Scalable Models with SIMetrix, OrCAD and LTSpice (Application note) https://www.onsemi.com/pub/collateral/and9783-d.pdf
- [8] Using Physical and Scalable Simulation Models to Evaluate Parameters and Application Results (White paper) https://www.onsemi.com/pub/collateral/tnd6330-d.pdf
- [9] Simulate with Physical and Scalable Discrete Models...What could we get ? (Tutorial) https://www.onsemi.com/pub/Collateral/TND6329-D.PDF
- [10] Using Physical and Scalable Simulation Models to Evaluate Parameters and Application Results (Video) https://www.onsemi.com/video/using-physical-and-scalable-simulation-models-to-evaluate-parameters-and-application-results
- [11] Usage of SIMetrix to Study MOSFETs Thermal Behaviors on Heatsink (Application note) https://www.onsemi.com/pub/collateral/and90096-d.pdf
- [12] SiC Simulation for Application Evaluation (Video) <u>https://www.onsemi.com/video/sic-simulation-for-application-evaluation</u>
- [13] SiC Simulation (White paper) https://www.onsemi.com/pub/collateral/tnd6395-d.pdf
- [14] SiC Simulation (Tutorial) <u>https://www.onsemi.com/pub/collateral/tnd6421-d.pdf</u>

