
Measuring accurately and safely on fast WBG Testing Environment Alexander Kuellmer, Application Engineer, Rohde & Schwarz

Sic

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

THE GROWING COMPLEXITY OF MODERN ELECTRONICS

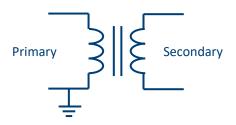
- ► Higher integration density
- Efficiency has to be increased:
 - Fast switching
 - Smaller internal Capacitances →
 Miniaturization and higher integration on IC
 Level
 - Usage of new materials like SiC, GaN, ...
- New Semiconductors typically lead to new boundary conditions like e.g. isolated gate drivers
- Wide range of power applications served (from mW to GW)
- Measurement equipment has to ensure that measurements can be made Safe, accurate and repeatable to find all anomalies of interest.

MEASUREMENT CHALLENGES IN WBG TESTING

DUT

- Fast switching needed to increase efficiency
- Voltage Levels:
 - Offset Voltage up to several kV
 - Gate Voltages up to several 10 V
- Current measurement:
 - Only indirect measurement
 - Current probes have insufficient BW
 - Shunts introduce a burden voltage
- EMC has to be fulfilled

Measurement equipment


- ► High Offset Voltage:
 - High CMRR needed
- ► Noise and Thermal drift:
 - Noise reduces signal fidelity
 - Drift affects longterm stability
 - Both reduce accuracy and reliability of the measurement result.
- Fast switching leads to high frequency excitation
 - CMRR and isolation are stronlgy frequency dependent.

Safety

- Isolation concept has to consider the derating over frequency
- Breakdown of insulation can cause hazard to equipment, DUT and possibly personnel.

WHAT TOOL TO USE?

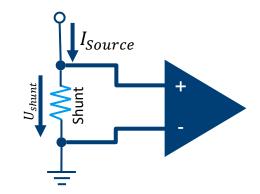
Isolation transformer

- Good DC Isolation
- Parasitic internal and external coupling limits usable frequency range
- Shows resonant behavior for faster switching devices

High voltage differential probe

- Bandwidth few 100 MHz
- Medium CMRR
- Limited Isolation to Ref-GND
- Best price-value proposition

Optical isolation

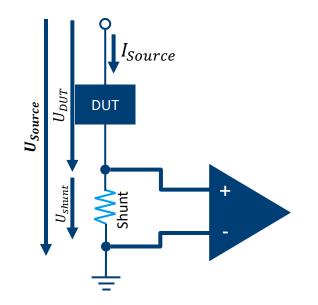

- BW up to 1 GHz
- Highest CMRR
- No disruption of isolation
- Lowest noise
- ► Thermal drift compensation
- Best choice for high isolated or high offset applications e.g. high-side gate or shunt measurement.

HOW TO MEASURE CURRENT USING A SHUNT

► Ohm's law:

 $R_{Shunt} = \frac{U_{Shunt}}{I_{Source}} \rightarrow U_{Shunt} = R_{Shunt} * I_{Source}$

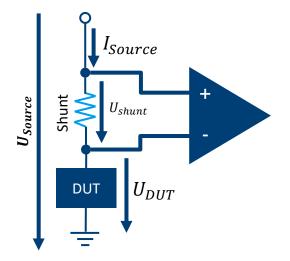
- ► 2 possible configurations for the shunt:
 - High-side: Between Source and DUT
 - Low-side: Between DUT and GND


HOW TO MEASURE CURRENT USING A SHUNT LOW-SIDE SENSE CONFIGURATION

► Ohm's law:

 $R_{Shunt} = \frac{U_{Shunt}}{I_{Source}} \rightarrow I_{Source} = \frac{U_{Shunt}}{R_{Shunt}}$

- U_{Source} is affected by U_{Shunt} $U_{Source} = U_{Shunt} + U_{DUT}$
- To reduce effect of burden voltage, shunt has to be as small as possible.
- ► Low-side sense configuration:
 - U_{Shunt} is ground referenced.
 - DUT is decoupled from GND by shunt
 - Short circuit detection might be affected



HOW TO MEASURE CURRENT USING A SHUNT HIGH-SIDE SENSE CONFIGURATION

Ohm's law:

 $R_{Shunt} = \frac{U_{Shunt}}{I_{Source}} \rightarrow I_{Source} = \frac{U_{Shunt}}{R_{Shunt}}$

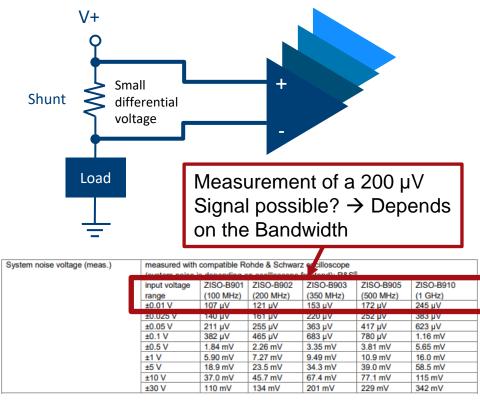
- U_{Source} is affected by U_{Shunt} $U_{Source} = U_{Shunt} + U_{DUT}$
- To reduce effect of burden voltage, shunt has to be as small as possible.
- ► High-side sense configuration:
 - U_{Shunt} is referenced on U_{DUT}
 - Measurement needs to be real floating to minimize errors.
 - \rightarrow High CMRR and isolation is needed

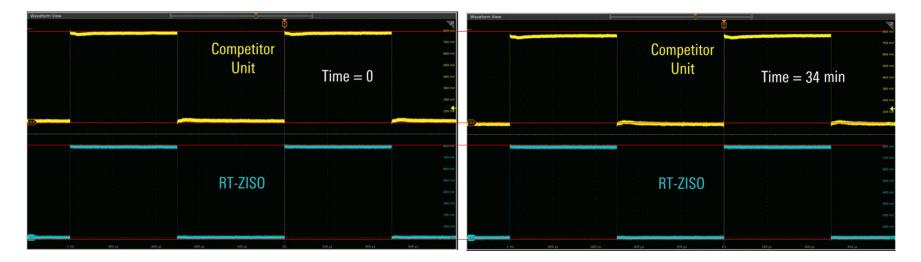
HOW TO MEASURE CURRENT USING A SHUNT

Ohm's law:

 $R_{Shunt} = \frac{U_{Shunt}}{I_{Source}} \rightarrow U_{Shunt} = R_{Shunt} * I_{Source}$

- ► 2 possible configurations for the shunt:
 - High-side: Between Source and DUT
 - Low-side: Between DUT and GND
- How to minimize U_{shunt} while maintaining good SNR?
 - Reduce the Shunt value.
 - Typically value of shunt is limited by the smallest sensitivity of the differential probe connected to the shunt.


Is this possible?

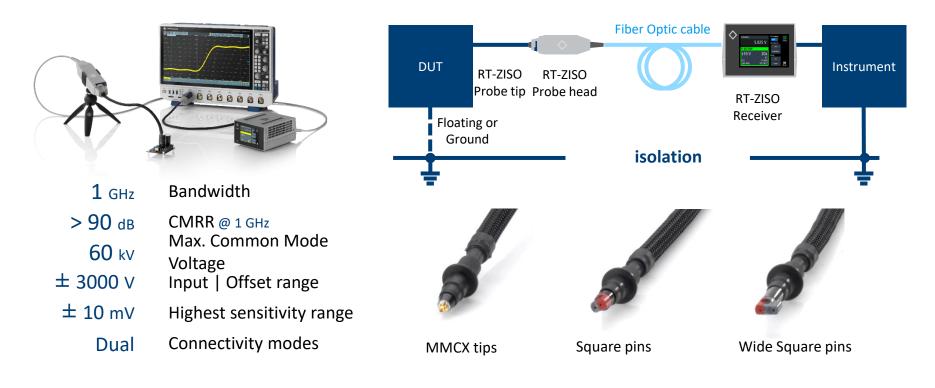

R _{Shunt}	I _{Source}	U _{Shunt}
1Ω	10A	10V
$1m\Omega$	10A	10mV
20μΩ	10A	200µV

FRONT-END AMPLIFIER ON PROBE HEAD

- ► Input Voltage range is limited by 2 Points:
 - Static divider ratio of the Probe tip e.g. 1:1, 1:10 or 1:100
 - Vertical input scaling selected by the frontend.
- What if we include a Frontend in an isolated Probe?
 - Input voltage range can be varied between \pm 10 mV up to \pm 30 V
 - Using a 1:1 probe tip gives superior resolution for measuring small signals in presence of a huge CM Offset.
 - Offset compensation like for an oscilloscope input is possible.

THERMAL DRIFT PERFORMANCE

RT-ZISO Temperature drift: attenuation ±0.15%/°C (meas.)


Dedicated front-end processing and receiver control help keep a stable thermal performance

DIFFERENCE IN DETAIL DUE TO CMRR

Rohde & Schwarz MM/DD/YYYY Edit Footer: >Insert >Header & Footer

RT-ZISO SOLUTION OVERVIEW

SUMMARY

- Offset Voltages in HVDC systems cause distorted measurements and make capturing true signal behavior difficult.
- Noise and Drift can couple into measurements, leading to mischaracterization of fast-switching behaviors, common in WBG devices.
- Common-Mode Voltage challenges arise, where CMRR performance deteriorates at high frequencies, making it harder to reject noise effectively.
- Thermal Drift caused by high temperatures in HVDC systems leads to inconsistent measurements over time.
- Safety Risks from isolation breakdown in high-voltage systems can lead to equipment damage and safety hazards.