Riding the Second Wave of SiC: Power Packaging *Tomas Krecek, PhD, Subject-matter Expert, Microchip Technology Inc.*

Sic

Bodo's Wide Bandgap Event 2024 Making WBG Designs Happen

Riding the Second Wave of Silicon Carbide (SiC)

Package Importance, Trends and Challenges

- While SiC technology is advancing rapidly, the packaging technology seemed to be relying on the past convention
- Current packaging development pointing to technical challenges
 - Electrical domain: electrical parasitics of the package, gate driver consideration (drain kelvin link)
 - Thermal domain: low SiC die size requires high thermal performance
 - Materials and interconnection: high temperature operations is limited
 - Mechanical domain: pinout design for paralleling, intelligent DC links connection, gate drivers' consideration
 - Problem of second source: slow down adaptation of a new advanced package

TO-247 Performance Improvement

Source sense pin for faster turn on and lower switching losses

1200V, 80 mΩ mSiC[™] MOSFET R_G = 5Ω, V_{DS} = 750V, V_{GS} = -5V/20V, T_Δ = 25°C

Pushing Beyond The TO-247

Source sense pins and top-side cooled

1200V, 180 mΩ mSiC[™] MOSFET R_G = 5Ω, V_{DS} = 800V, V_{GS} = -5V/20V, T_A = 25°C

Extremely Low Stray Inductance Benefit 1 – Reduced voltage overshoot

V_{DS} max vs Drain current

Designers can use lower rated devices and still have margin against overshoot

Lower device cost

Greater system efficiency

Extremely Low Stray Inductance

Benefit 2 – Greater efficiency across wide working conditions

Extremely Low Stray Inductance

Benefit 3 – Reduced cost of ownership

	10 kHz	25 kHz	50 kHz
D3	2.6	6.4	12.9
SP6LI	1.6	3.9	7.8

Total switching losses per switch per year at 420A, in units of MWhs

Summary

Broad market acceptance that SiC saves cost at the system level

To get even more out of SiC, new packaging is required to make systems more efficient, compact, and longer-lasting

Today we have looked at the impact of parasitic inductance

Comparing the SP6LI to the common 62 mm package, the end user can save over \$1,000 per module per year

Adopt SiC with Ease, Speed and Confidence

Contact us at

www.microchip.com/SiC

